

Our planning at Stathern is informed by the national curriculum, the DFE's non-statutory Ready to Progress guidance and the NCETM's prioritisation and professional development materials. This policy has been written using these documents to exemplify each of the 4 strands of calculation and summarise how this is to be taught through sentence stems, concrete, pictorial and abstract levels of understanding. Year groups have been added alongside as a guide. Ongoing assessment of pupils understanding informs our teaching. The steps in learning, challenges and approaches should always be adapted as necessary and based on pupils' security of understanding and readiness to progress to the next stage. At all stages of their learning children are encouraged to think deeply about the mathematical concepts introduced to them, apply these in a variety of ways and reflect on ways to be efficient and flexible in their calculation choices.

Addition

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
is the whole, \qquad is a part, \qquad is a part. _ = \qquad plus \qquad and \qquad plus \qquad _ = \qquad There are \qquad in total. Year 1	$\begin{array}{ll} 3+4=7 & 7=3+4 \\ 4+3=7 & 7=4+3 \end{array}$ $\begin{array}{ll} 5+3=8 & 8=5+3 \\ 3+5=8 & 8=3+5 \end{array}$	$\begin{array}{ll} 3+2=5 & 2+3=5 \\ 5=3+2 & 5=2+3 \end{array}$	(2)$2+3=5$ $5=2+3$$2+2=5$ $5=3+2$ Bar model$\frac{2}{2} 5$
First... Then... Now... e.g. First there were 4 children on the bus, then 3 children got on. Now there are 7 children on the bus. Year 1	Role play getting 'on the bus' or use a toy bus.		
We can look for pairs of addends which sum to 10 . \qquad plus \qquad is equal to 10 , then 10 plus \qquad is equal to \qquad Year 2		Pictorial representations of the tens frames OR	$3+5+7=3+7+5=10+5=15$

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
I know that \qquad plus \qquad is equal to \qquad (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and _. \qquad Year 3: Adding Multiples of 10 using scaled facts	 OR place value counters	Could include pictorial representations of equipment or: $\begin{aligned} & 70+50= \\ & 70+30=100 \\ & 100+20=120 \end{aligned}$	
I know that \qquad plus \qquad is equal to \qquad (single-digit addends) So \qquad tens plus \qquad tens is equal to \qquad tens. (multiple-of-ten addends) \qquad plus \qquad is equal to one hundred and \qquad _. Year 3: Adding 2 digit numbers mentally	$87+30=110+7=117$ OR place value counters	$\begin{aligned} 87+30 & =80+30+7 \\ & =110+7 \\ & =117 \end{aligned}$	$\begin{aligned} 87+30 & =80+7+30 \\ & =110+7 \\ & =117 \end{aligned}$
First we add: \qquad plus \qquad is equal to \qquad ... then we adjust: \qquad minus \qquad is equal to \qquad Year 3: Adding through adjusting		$\begin{aligned} & 520+299= \\ & 520+300=820 \\ & 820-1=819 \end{aligned}$	$\begin{aligned} & \mathbf{6 9 + 6 9}=138 \\ & 70+70=140 \end{aligned}$

Addition - Known Number Facts

Compensating - rounding to the nearest multiple 10, 100, etc and adjusting Years 3, 4, 5 and 6	$35+49=34+50=84$		$\begin{aligned} & 69+69=138 \\ & 70+70=140 \end{aligned}$
Year 3 Derive quickly: Compliments to 100 First we make 10 ones. The ones digits add up to 1 ten, so we need 9 more tens.	Working using Dienes or place value counters, adding ones then tens.		

Subtraction

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
is the whole, \qquad is a part, \qquad is a part. \qquad = \qquad minus \qquad _ and \qquad _minus _ \qquad Year 1	I have 8 counters. 5 counters are red. How many are blue?	There are 6 children. 2 have their coat on. How many do not have their coat on?	There are 8 flowers. 2 are red and the rest are yellow. How many are yellow? $8-2=6$
First... Then... Now... e.g. First there were 4 children in the car, then 1 child got out. Now there are 3 children in the car. Year 1	Role play 'getting out of a car'.		
We partition the \qquad int into _ and \qquad First we subtract the \qquad from \qquad t get to 10. Then we subtract the remaining \qquad from 10. We know 10 minus \qquad is equal to \qquad Year 2	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=8 \end{aligned}$ 12	First there were 12 children on the ride. Then 4 got off. Now there are 8 children on the ride.	$\begin{aligned} & 12-4= \\ & 12-2=10 \\ & 10-2=4 \end{aligned}$
There are more \qquad than \qquad There are fewer __ than \qquad \qquad The difference between \qquad and \qquad is \qquad Year 2	The difference between 2 and 5 is 3 . The difference between 5 and 2 is 3 .	The difference between 4 and 7 is 3 . The difference between 7 and 4 is 3 .	5 red cars 3 blue cars $5-3=2$

I know that \qquad minus \qquad is equal to \qquad (single-digit fact) So \qquad minus \qquad is equal to \qquad . (related twodigit minus single digit fact) I know that ten minus \qquad is equal to \qquad so \qquad minus \qquad is equal to \qquad Year 2			$47-3=44$
I know that \qquad minus \qquad is equal to \qquad So \qquad tens minus \qquad tens is equal to \qquad tens. Year 2	$70-30=40 \text { so } 75-30=45$	$75-30=45$	$5-3=2$ 5 tens -3 tens $=2$ tens $50-30=20$
First I subtract the tens, then I subtract the ones. Year 2	$\begin{aligned} & 45-23= \\ & 45-20=25 \\ & 25-3=22 \end{aligned}$	$67-34=33$ Real story	$\text { - } \begin{aligned} 45-20-3 & =25-3 \\ & =22 \\ -45-23 & =45-20-3 \\ & =25-3 \\ & =22 \end{aligned}$
First I subtract the tens, then I subtract the ones. Year 2: Bridging		$62-34=28$	$\begin{aligned} & 63-17=46 \\ & 63-10=53 \\ & 53-7=53-3-4=46 \end{aligned}$

I know that \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	See Year 2 (bridging)	$\begin{aligned} & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$	$\begin{aligned} & 120 \cdot \because=90 \\ & \quad 100 \\ & 120-30= \\ & 120-20=100 \\ & 100-10=90 \end{aligned}$
I know that __ \qquad minus \qquad is equal to \qquad (bridging ten) So \qquad tens minus \qquad tens is equal to \qquad tens. (bridging ten tens) One hundred and \qquad minus \qquad is equal to \qquad Year 3	$126-70=56$		$\begin{aligned} & \\ 126-70 & =120-70+6 \\ & =50+6 \\ & =56 \end{aligned}$
We partition the \qquad into \qquad and \qquad First we subtract the \qquad from \qquad to get to a multiple of 10 . Then we subtract the remaining \qquad from the multiple of 10 . We know 10 minus \qquad is equal to \qquad so \qquad minus \qquad is equal to \qquad Year 3	Physically regrouping the one ten as ten ones.	$544-16$	$\begin{aligned} & 544-16= \\ & 544-10=534 \\ & 534-4-2=528 \end{aligned}$
We partition the \qquad int \qquad and \qquad First we add the \qquad to \qquad to get to 100. Then we add the remaining \qquad to 100 . We know 100 plus \qquad is equal to \qquad Year 3		$123-97=26$	As counting up $97+3+20+3=123$

Subtraction: Written Methods

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
We line up the ones; \qquad ones plus \qquad ones. We line up the tens: \qquad tens plus \qquad tens. The \qquad is in the ones column - it represents \qquad ones. \qquad ones minus \qquad ones is equal to \qquad ones. The \qquad is in the tens column - it represents \qquad tens. \qquad tens minus \qquad tens is equal to \qquad tens. In column subtraction we start at the righthand side. Year 3: Column subtraction of 2 and 3 digit amounts		Children could draw place value counters.	$\begin{array}{r} 65 \\ -\quad 23 \\ \hline 42 \\ \hline 462 \\ -251 \\ \hline \end{array}$
If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Year 3: Column Subtraction: Including regrouping digits		Children could draw place value counters.	10 s 1 s 9^{8} 14 6 10 s 1 s 9^{8} 14 6 8 8100 s 10 s 1 s 2 2 3 1 4 2 1005 105 15 22^{1} 12 3 1 4 2 100 s 10 s 1 s $2 \mathbf{2}^{1}$ 12 3 1 4 2 0 8 1

If there is an insufficient number to subtract from in a given column, we must exchange from the column to the left. Year 4, 5 and 6	See Year 3 examples	See Year 3 examples	$\begin{array}{r} 6^{5} 5^{4} 3^{1} 8 \\ -\quad 2,789 \\ \hline 3,749 \\ \hline \end{array}$	
				$\left.\begin{array}{lll} £ & 2 & 9^{8} \cdot 5^{1} \\ £ & 1 & 8 \end{array}\right)$
				£ 10 .

Subtraction Known Number Facts

$152-30=122$
$122+1=123$

Multiplication

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$ Ten, twenty, thirty, ... One five, two fives, three fives, ... Year 1			10, 20, 30, ...
There are \qquad coins. Each coin has a value of \qquad p. This is \qquad p. Year 1	Representing each group by one object		Five $2 p$ coins $=10 p$
There are \qquad equal groups There are \qquad in each group Year 2		(5) (5) (5)	$5+5+5$
There are \qquad in each group. There are \qquad groups. There are \qquad in a group and \qquad groups. Year 2		5 5 5	$\begin{aligned} & 2+2+2+2=8 \\ & 2 \times 4=8 \\ & 5+5+5=15 \\ & 5 \times 3=15 \end{aligned}$
Factor times factor is equal to the product. The product is equal to factor times factor. Year 2		(5) (5) (5) (5)	$\begin{aligned} & 2 \times 3=6 \\ & 6=2 \times 3 \end{aligned}$

\qquad times \qquad can represent \qquad in a group and \qquad groups. It can also represent \qquad groups of \qquad . Multiplication is commutative. Year 2			$2 \times 5=5 \times 2$
__ is equal to __ plus __, so __ times __ is equal to _ times _ plus _ times _ . \qquad is equal to \qquad m minus \qquad , so \qquad times \qquad is equal to \qquad times \qquad minus \square _times \qquad Multiplication is distributive. Year 3			$\begin{aligned} \hline 5 & =4+1 \\ 5 \times 8 & =4 \times 8+1 \times 8 \\ & =32+8 \\ & =40 \\ 4 & =5-1 \\ 4 \times 8 & =5 \times 8-1 \times 8 \\ & =40-8 \\ & =32 \end{aligned}$
__ is equal to __ plus _ , so __ times __ is equal to __ times __ plus __ times __. \qquad \qquad is equal to \qquad minus \qquad , so \qquad times \qquad is equal to \qquad times \qquad minus \qquad times \qquad Multiplication is distributive. Year 3			$\begin{aligned} 3 \times 13 & =3 \times 10+3 \times 3 \\ & =30+9 \\ & =39 \end{aligned}$
To multiply a whole number by 10 , the digits move one place to the left and add a zero place holder. Year 3	 (10) (10) (10)(10) (10) (10) (10) (10) (10) (10) (10) (1) \rightarrow (1) (1) (1) (1) (1) 1 (1) (1) (1) (1) (1) (1) 1	$\mathbf{1 , 0 0 0 s}$ $\mathbf{1 0 0 5}$ $\mathbf{1 0 s}$ $\mathbf{1 s}$ 1 2 1 2 0$\quad \downarrow \times 10$	$6 \times 10=60$ $12 \times 10=120$

Children are taught automatic recall of the times table facts through a variety of methods. This includes 'rolling numbers' beginning with 2,5 and 10 in Year 1 and 2
And 3, 4, 5, 6, 7, 8 and 9 from Year 3 onwards.
Quick recall of times table facts upto 12×12 is practised daily through discrete activities.
Alongside this the maths lesson should be used to gain clear conceptual knowledge as detailed above.

In Year 3, children will practice their automatic recall of facts in the 2,5,10, 3 and 4 times table. In Year 4 this will be extended to the $6,7,8,9,11$ and 12 times table. Strategies to quickly derive the 11 and 12 times table will also be explored.

The national curriculum requires pupils to recall multiplication table facts up to 12×12, and this is assessed in the multiplication tables check. For pupils who do not have automatic recall of all of the facts by the time of the check, fluency in facts up to 9×9 should be prioritised in the remaining part of year 4 . The facts to 9×9 are particularly important for progression to year 5 , because they are required for formal written multiplication and division.

The 36 multiplication facts that are required for formal written multiplication are as follows.

2×2							
3×2	3×3						
4×2	4×3	4×4					
5×2	5×3	5×4	5×5				
6×2	6×3	6×4	6×5	6×6			
7×2	7×3	7×4	7×5	7×6	7×7		
8×2	8×3	8×4	8×5	8×6	8×7	8×8	
9×2	9×3	9×4	9×5	9×6	9×7	9×8	9×9

During application of formal written multiplication, pupils may also need to multiply a onedigit number by 1 . Multiplication of the numbers 1 to 9 by 1 are not listed here because these calculations do not need to be recalled in the same way.

While pupils are learning the individual multiplication tables, they should also learn that:

- the factors can be written in either order and the product remains the same (for example, we can write $3 \times 4=12$ or $4 \times 3=12$ to represent the third fact in the 4 multiplication table)
- the products within each multiplication table are multiples of the corresponding number, and be able to recognise multiples (for example, pupils should recognise, 64 is a multiple of 8 . but that 68 is not)

Strategy	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
Adjacent multiples of \qquad have a difference of -. Year 3 onwards	0700030030 (4) (4) (4) (4) (4)		$\begin{aligned} & 4 \times 6=4 \times 5+4 \\ & 4 \times 9=4 \times 10-4 \end{aligned}$

Products in the 10 times table can be used to find products in the 11 times table and 12	
times table.	$\bigcirc 000000000$
Year 4 onwards	$5{ }^{5}$
Year 4 onwards	-000000000

Division

Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)
One group of two, two groups of two, three groups of $2, \ldots$ Ten, twenty, thirty, ... One five, two fives, three fives, ... Year 1			6 biscuits shared between 2 children gives 3 biscuits each.
The \qquad costs p. \qquad Each coin has a value of \qquad p. So I need \qquad coins. Year 1		(5) (5) (5) (5)	Five $2 p$ coins $=10 p$
\qquad is divided into groups of \qquad There are \qquad groups. We can skip count using the divisor to find the quotient. Year 2			$\begin{aligned} & 5+5+5=15 \\ & 15 \div 5=3 \end{aligned}$
\qquad divided between \qquad is equal to \qquad each. We can skip count using the divisor to find the quotient. Year 2			One 5 is 1 each. That's 5. Two 5 s is 2 each. That's 10. $10 \div 5=2$

Ten times \qquad is equal to \qquad so \qquad divided into groups of ten is \qquad Year 2	30 represents the total number of counters. 10 represents the number in each group. 3 represents the number of groups.	(-10)							$\begin{aligned} & 10 \times 3=30 \\ & 3 \times 10=30 \\ & 30 \div 10=3 \end{aligned}$ Answers can be derived by skip counting
 twos are 14. 7 twos are 14. \qquad times \qquad is 14 , so 14 divided by 2 is \qquad ." "14 divided into groups of 2 is equal to \qquad ." If the divisor is \qquad , we can use the \qquad times table to find the quotient. Year 3	I need 14 ping-pong balls. There are 2 ping-pong balls in a pack. How many packs do I need?	2	2		14	2	2	2	$14 \div 2=7$ Answers should be derived using known multiplication facts
\qquad twos are 14. 7 twos are 14. \qquad times \qquad is 14 , so 14 divided by 2 is \qquad ." " $£ 14$ shared between 2 is equal to $£ 7$ each. If the divisor is \qquad , we can use the \qquad times table to find the quotient.	$£ 14$ is shared between 2 children. How much money does each child get?		7		14				$14 \div 2=7$ Answers should be derived using known multiplication facts
To divide a multiple of ten by 10 , remove the zero from the ones place. Year 3		$\downarrow \div 10$	$1,000 \mathrm{~s}$		00s	10s	1s	0	$90 \div 10=9$ $150 \div 10=15$

\qquad is a multiple of \qquad so when it is divided into groups of \qquad , there is no remainder. The remainder is always less than the divisor. Year 4			$17 \div 5=2 r 7$ is incorrect because 7 is greater than 5 .$17 \div 5=3 r 2$	
If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. Year 4	$84 \div 4=21$		8 tens 4 ones \div 84 \div 6 tens \div 21 ones \div 81 \div	4 $=$ 2 tens 4 $=$ 1 one 4 $=$ 21$\begin{array}{ccc} 3 & = & 2 \text { tens } \\ 3 & = & 7 \text { ones } \\ \hline 3 & = & 27 \end{array}$
Division: Written Methods				
Stem sentences	Concrete (Can we make it?)	Pictorial (Can we draw it?)	Abstract (Can we write the equation?)	
If dividing the tens gives a remainder of one or more tens, we must exchange the remaining tens for ones. Year 5		$72 \div 3=24$	$10 s$ $1 s$ 2 1 4 8 $2 \quad 1$ $4 \lcm{8 \quad 4}$ $\begin{array}{rr} 2 & 4 \\ 3 \\ 7 \quad{ }^{1} 2 \end{array}$	$\begin{aligned} & 8 \text { tens } \div 4=2 \text { tens } \\ & 4 \text { ones } \div 4=1 \text { one } \end{aligned}$

			$\frac{24 r 1}{3 \longdiv { 7 ^ { 1 } 3 }}$	
If dividing the hundreds gives a remainder of one or more hundreds, we must exchange the remaining hundreds for tens. Year 5			212 $4 \lcm{848}$ $14 \quad 1$ $5 \longdiv { 7 { } ^ { 2 } 0 \quad 5 }$ $1 \quad 5 \quad 3$ $4{ }^{2} 1^{1} 2$	

If there is a multiplicative change to the dividend factor and a corresponding change to the divisor, the quotient remains the same. If I multiply the dividend by \qquad , I must multiply the divisor by \qquad for the quotient to remain the same. Year 5 and 6	$\bigcirc \bigcirc$ $\begin{array}{r} 3 \\ \times 3 \\ \times 3 \\ (9) \times 3 \end{array}$ \bigcirc \bigcirc			

If the dividend is made one tenth of the
size, the quotient will be one tenth of the
size.
If the dividend is made one hundredth of
the size, the quotient will be one
hundredth of the size.
I move the digits of the dividend
places to the left until I get a whole
number, then I divide; then I move the
digits of the quotient _ places to the
right.
Year 5 onwards

Where there is a remainder, the result can be expressed as a whole-number quotient with a whole-number remainder, a whole-number quotient with a proper-fraction remainder, or as a decimal-fraction quotient. Year 6	$354 \div 15=$?		
	$\begin{array}{rrrr} & 2 & 2 & 3 \\ 3 & 5 & 4 & \\ 3 & 0 & & \end{array}$	$\begin{array}{rlll} & 2 & 3 & \frac{9}{15} \\ 15 \\ 3 & 5 & 4 \end{array}$	$\begin{array}{rrr} & 2 & 3.6 \\ 1 5 \longdiv { 3 } & 5 & 4.0 \\ 3 & 0 & \end{array}$
	54	-	54
	45	45	$4 \quad 5$
	9	- 9	90
			$\begin{array}{ll} 9 \quad 0 \\ \hline \end{array}$
		$\frac{9}{15}=\frac{3}{5}$	
	So, $354 \div 15=23$ r 9	So, $354 \div 15=23 \frac{3}{5}$	So, $354 \div 15=23.6$

This policy should be reviewed every two years, or as necessary.

Log of changes and updates to the document:

Date	Page	Change	Approver
$5 / 11 / 2020$	All	Policy created by Maths Leader - EM and reviewed with HT	KL
11/11/2020	All	Reviewed at staff meeting	SDC
	All	Reviewed by governors	KL SDC
February 2023	All	None	Update logo and dates Update and add to policy, reflecting the current practise, with specific examples in Year groups Update to HT, Maths SL and Link Governor
	All	MH	

